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The apparatus function, i.e. the response of the equipment to a heat pulse, is derived for DTA 
instruments where, besides heat conduction, convection and radiation are considered. The 
solution of the heat-balance equation is described by a superposition of two exponential 
functions, which leads to the dependences of the calibration factor and the time constants on the 
heat capacity, the heating rate and the temperature. For the experimental determination, the 
relations are transformed into expressions which can easily be obtained from the calibration 
measurements. 

DTA is increasingly used for quantitative evaluations and kinetic applications. 
The required calibration factor and the apparatus function often depend on the 
heat capacity of the sample, the scanning rate and the temperature. If the device is 
employed under different measuring conditions and only few calibration values are 
available, it is favourable to know these dependences as expressions in closed form. 
The variability of the instrument parameters is caused by non-linear components of 
the heat transfer. It is the purpose of this paper to ~tescribe the influences of the heat 
capacity of the sample, the scanning rate and the temperature on the apparatus data 
analytically. 

Starting from the theory of Void [1], the relation between the heat flow and the 
differential temperature has been examined in detail [2] and discussed for special 
experimental conditions and problems [3]. In particular, it is known that the 
apparatus function can be described as a sum of two exponential functions [4]. 
However, the influence of the scanning rate on the time constant in the apparatus 
function has not been specified; experimentally, a decrease with increasing heating 
rate has been found [5]. 
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62 HEYROTH: THE APPARATUS FUNCTION 

In the present paper, the dependences of  the calibration factor and the time 
constants on the heat capacity, the scanning rate and the reference temperature are 
deduced for the case of  non-constant thermal contact resistance, constant scanning 
rates of the reference temperature and small differential temperatures between 
sample and reference. 

Derivation of the apparatus function 

At time t = 0, a heat amount AQ be converted in the sample. AQ causes a heat 
flow O(t), which leads to a temperature alteration at the temperature sensor of  the 
sample. The apparatus function is the response! of  the instrument caused by the 
perturbation A Q, i.e. the indicated measuring signal AT(t). 

Model. The device (Fig. 1) is considered to consist of the sample with sample 
container and the reference with container, which are symmetrically coupled with a 
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Fig. I Scheme of the equipment 

block. The temperature sensors are attached to the containers. The differential 
temperature AT = Ts-TR between the sample and reference is measured as a 
function of time. The temperature of  the reference can be controlled by means of the 
block according to a given programme. It is assumed that the system has arrived at a 
stationary state, i.e. during a measurement the heating or cooling rate 13 = d Tlddt i s  
constant or zero. The following mathematical assertion is made for the case of 
heating and an exothermic process in the sample (A T>  0). It is also valid for other 
stationary states. 
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HEYROTH: THE APPARATUS FUNCTION 63 

The heat transfer between block and sample container is described by the heat 
flow ~'1. Thermal conduction, convection and radiation are considered to 
contribute to this heat transport. The temperature difference ~ = TB- TR between 
the block and the measuring cell, determining this hea t  transfer, is not exactly 
defined because, between the furnace and the containers, a temperature gradient 
exists along the block, maintaining the flow ~'1- Therefore, in the following 
derivation the temperature difference ~9 is determined from the stationary state of 
the heating and is thereby eliminated. 

Furthermore, there is a heat flow ~k 2 between sample and reference introduced, 
described by thermal conduction. Finally, a heat leakage is admitted, i.e. a heat 
dissipation ~k 3 that releases a heat loss from the sample and reference to the 
environment, e.g. by the temperature sensors. Since this represents only a 
correction, exclusively thermal conduction is considered. (It is easily possible to 
extend the derivation to the case when the flow ~'a includes convection and 
radiation, e.g. if the block does not enclose the sample and reference completely.) 

It is assumed that the differential temperature A T is much less than all Other 
temperature differences and temperatures, so that quadratic terms in A T can be 
neglected and the heat flows are superposed without mutual interference. This 
means that the heat flows can be described by the corresponding temperature 
differences and the stationary state is hardly disturbed by AQ. 

The time-dependence of the heat transient in the sample and to the sample 
container is described by ~k = ~'0 exp ( - t/~:*) with the time constant z* for the heat 
relaxation in the sample and its holder. The energy conservation requires 

~b(t) dt = AQ (1) 
o 

which results in 

The heat flow ~1 from the block to the sample container amounts to 

61 = A I ( ~ - A T ) + A c ( S - A T ) Z + A , [ ( T , + S ) 4 - ( T , + A T )  4] (3) 

The first term represents the heat conduction and the heat transfer at the interfaces. 
For a single thermal resistance between the block and the container, we have 

A1 1 
S l 1 1 _ q - _ _ + _ _  

2 ~n ~c 
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64 HEYROTH: THE APPARATUS FUNCTION 

with S = surface (of the container) 
l = length (distance between block and container) 
2 = thermal conductivity (of the material in the space between block 

and container) 
ctB, ~c = heat-transfer coefficient at the block and at the container, 

respectively. 

Through the second term in (3), the heat convection between the block and the 
sample container is included. According to the usual approximation for the total 
heat-transfer coefficient [6], besides the constant portion of  the transfer coefficient 
contained in A 1, a constituent is included that shows a linear increase with the 
temperature difference. In air 

Ac _ 0.07 W m -2 K -2 
S 

where S is the surface (of the container). The third term in (3) describes the 
contribution of  the radiation to the heat transfer. In the case of  parallel walls of  area 
S 

A, 
- -  gO" 

S 

where Stefan-Boltzmann constant a = 5.67.10 -8 W m -2 K -4 and e is the 
emitting power of  the block and the container. As for the expansion of the bracket 
term, expressions with ~3 are neglected. 

The heat balance. The temperature change at the sample container is represented 
by the sum of the heat flows 

cd(Tg+ AT) 
dt - I~/~- I]/1 - I~ 2 - I//3 (4) 

The heat capacity C of the sample with its container is assumed to be constant 
during a measurement and to be equal to the heat capacity of  the reference and its 
holder. The heat conductivity between the sample and the reference is described by 
1#2 ~-" AEAT, and the heat dissipation by 43 = A3(Tg+ A T -  TE), where T e is the 
environmental temperature. 

The stationary state. First, (4) is considered for the case A T = 0 (no reaction in 
the sample). Evidence that, in the case of  radiation, 0 decreases for high 
temperatures with T R 3 (the reason for this is that the heat transport  by radiation 
goes with [(TR+,9) 4 -  T~] = 40T~+ ...). The solution of  Eq. (4) leads to 
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HEYROTH: THE APPARATUS FUNCTION 65 

0 = ( 2 A , ) - '  {~4A4[C[3 + A3(TR - TE)] + As 2 - As} (5) 
with 

A4 = Ac+6A,T2R and A s = A1 +4ArT~ (6) 

The temperature difference 0 between the block and the cell rises with the heating 
rate/~, the heat capacity C and the heat losses. To see the influence of  TR, we 
consider the case when only radiation takes place. With A1 = A2 = A3 = At = 0, 
(5) changes into 

1 {~24A,T~C[3+ 2 6 - 16At TR-4ART 3} 0 12A, T2 

which can be simplified to 

B+ 
O =  T R +  

3 X] 6A,T 2 

The expansion of  the root for high TR leads to 

= _ _ _  

i.e. 

3 2 2A, T 4 

4A, T~ 

So that O is proportional t o  TR 3 . 
The apparatus function. The apparatus function isthe solution of (4) for the case 

AT # 0 and AQ # O, in which, according to the above assumptions, (5) remains 
valid, which means that the stationary state is little disturbed. Furthermore, the 
assumption is made that, during the heat transient of  the perturbation caused by 
AQ, the coefficient ofA Tcan be regarded as a constant, i.e. T R = To + fit (t = time) 
is replaceable by constant average value in this time interval, which is possible if 
fl(~ + ~*) ,~ T R (z, see below). (4) changes into 

cd (AT)  [A6+ATg]AT+~* e x p ( - ~ )  (7) 

with A 6 = A 1 + A2 + A3 +4A, T 3, A 7 = 2Ac and is solved by 

A T - d Q z L * [ e x p ( - t ) - e x p ( - ~ ) l C  (8, 
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Fig. 2 The apparatus function for x = T/z* = 3 (solid line) 

(Fig. 2), where 
C 

z - (9) 
A6 A- A 7 ~q 

is the time constant for the heat transient of the heat quantity A Q with the adjoining 
parts of the apparatus. The apparatus function is symmetrical with respect to the 
time constants, i.e. it maintains its shape and is only altered by the factor z*/z in case 
of the permutation of z and z*. (8) can also be written in the form 

A T - A Q c  z-z'z { l _ e x p [ _ t ( 1  ! ) ] } e x p ( - - t )  

in which, for z ~  ~ ,  the first term describes the temperature increase in the sample if 
the cell gives offno heat. This component is superposed on the exponential decrease 
due to the thermal interaction with the adjoining material. Moreover, the 
expression (JQ/C) exp ( -  t/z) is a limit curve, i.e. the apparatus function in the case 
z*-+O. 
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HEYROTH: THE APPARATUS FUNCTION 67 

Discussion of  the apparatus function and the calibration 

of  the D T A  equipment 

Characteristic values. The apparatus function can be characterized by 
- -  the ratio of  the time constants • = z/z* 
- -  the position t,, of  the maximum: 

In  ~r 
t m = ~  - x-- I  

- -  the height A T,, of  the maximum: 

AQ _ x 

- -  the area 

- -  the rise at t = 0: 

f d T d t  = AQ 

0 

( d(AT)'~ _ AQ 1 
- - d t - - - / t = o  C T* 

- -  the times t~ and t2 at which the differential temperature amounts to ATm/2. 
Dependence of  the time constants on the conditions of  operation. The time constant 

z* depends only on the conductivity and the mass of  the sample material and its 
spatial distribution in the sample container, if the containers of  the sample and 
reference are maintained. The time constant z, however, depends on the heating rate 
r ,  the temperature T R of  the measuring cell and the heat capacity C. From (9), (7), 
(5) and (6), it follows that 

Ac {~F4A,~[Cfl+ A3(T~-  T~)]+ A2s-A~}) -~ (10) Z = C ( A  6 + - ~  

Expression (10) can be simplified according to the special values of  the relevant 
material constants. For the limiting cases, for instance: 

- -  only thermal conduction to the block, reference and environment (which is 
valid for a compact metallic arrangement containing the sample and the reference): 

c " t ' -  

AI + Az + A3 
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68 HEYROTH: THE APPARATUS FUNCTION 

- - t h e  quadratic term in 0 predominates (a suitable approximation to free- 
hanging containers): 

- -  only radiation: 

C 

,/ cc[3 

C 
z -  4ArT 3 

If the actual heat transfers are unknown, z(C, [3, TR) can be approximated by 

C 
= (11) 

x/a + bC[3 + (e+ g T ~) ~ 

where the constants a . . . g  are determined from the calibration adjustment with 

different [3 and T R. 
Normalization. Division of (8) by the area (see characteristic values) leads to the 

normalized apparatus function: 

I t 

The calibration factor. The apparatus function can be determined experimentally 
in thc known way and thereby the instrument calibrated, if a known heat pulse of  
amount Qp is released in the sample container and the corresponding DTA curve 
V(t) is measured (e.g. as an electric signal of the differential temperature sensor). 
Due to the time-dependent heat transient in the sample and with the adjacent 
system, the measuring curve V(t) is blurred relative to the heat quantity Qp6(t) 
realized at t = 0 (6(0 being the Dirac function). This distortion proceeding during 
the experiment can be described as a convolution 

kV(t)  = Qpr(t) • A(t) = QeA(t) (13 

in which k is a factor characterizing the applied device (inverse calorimetric 
sensitivity). In order to calibrate the ordinate axis in units of the heat flow, the area 
below the measuring curve is put equal to Qp: 

oO 

! kV( t )d t  = Qp (14) 

If the factor k and the time constants are constant during the time interval in which 
V(t) essentially deviates from the base line, k can be placed before the integral. The 
area below V(t) can be determined from the characteristic values of  the measuring 
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HEYROTH: THE APPARATUS FUNCTION 69 

curve V(t), which are defined analogously to the specified values of  the apparatus 

function: 

V ( t )d t  = ~)Vm(t2-t,) (15 
o 

is a correction factor plotted vs. z/z* in Fig. 3. The time constants can be specified 
from Fig. 4 with the help of  t 1 , t 2 and t,,. (The ambiguity in Fig. 4 is due to the 

yA 
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Fig. 3 Correction factor y for the determination of the area below the measured curve V(t) with the help 

of V.(t2- tO 
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Fig. 4 Connection between the time constants T* and T with the measured half-times t 1 and t z related to 

tin, the measured time at which the maximum occurs. The curves are provided with the parameter 
= z/r* in order to distinguish between the two branches 

symmetry of  the apparatus function in z and z*; it has to be estimated from the 
equipment whether z /z*>  1 or < 1.) With (14) and (15), the factor k can be 
determined from the measuring curve V(t). 

Under all conditions of  operation, the measuring signal is in the same way 
proportional to the differential temperature A T: 
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70 HEYROTH: THE APPARATUS FUNCTION 

V(t) = sAT(t )  (16) 

s is a constant scale factor; in electrical recording, it results from the electrical 
sensitivity of the temperature sensors and the amplification factor. If k and s are 
unified to the calibration factor K, (16), (14) and (8) lead to 

From (lO) 

C 
K = ks - (17) .g 

AcAs Ac w/-4A4[Cfl+ A3(TR - TE)]+A~ (18) 
K =  A 6 -  A ~ -  + A-~- 

The calibration factor is proportional to the values of the heat transport and 
depends on C, fl, T R and TE in the second approximation. Analogously to (10), the 
calibration factor (18) can be simplified for the limiting cases of predominant heat- 
transfer mechanisms or, corresponding to (11), approximated by an expression of 
the form 

K = ks = ~/a+bCfl+(e+gT3R) 2 (19) 

The constants a . . . g  are determined from four calibration measurements. With the 
help of the characteristic values and Fig. 4, it is possible to test the validity of the 
model. 

For an actually measured DTA curve S(t) according to (13) holds: 
t 

_ dQ(t) -~ A(t) = f dQ(t') kS(t)  dt j ~ A( t -  t') dt' (20) 

o 

where dQ/dT  represents the heat flow searched for, realized in the sample. If the 
convolution (20) taking place during the experiment is neglected, which is possible 
provided that dQ/dt is scarcely varied in the time interval z+ z*, (20) can be 
replaced by the approximation 

dQ 
kS(t)  .~ dt 

i.e. the heat flow directly follows from S(t) and k = k(C, r, TR). Because of(14), the 
area of a peak (also of the blurred measuring curve) is equal to the heat quantity 

realized in the sample. 
Deconvolution. The distortion caused by the apparatus function has to be 

removed by deconvolution [7] if the half-life of the apparatus function is of the same 
order of magnitude as the time interval in which a reaction takes place: 

dO _ kS ( t )*  A(t) (21) 
dt 
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An example of the reconstruction methods is the recurrence in the course of which 
the original function 

dO 
W ( t ) -  dt 

is obtained by steps. The approximation after m steps is found as 

W.,(t) = W._ 1(0 + [kS(t)-  A(t) ~ W,. a(t)] (22) 

For the special measurement condition C, p, T~ and for any point of time t, the 
values of  k and A can be calculated with a computer by means of (12), (17), (10), (11) 
and thus the actual values of k and A can be employed in (22). The deconvolution 
can start with W.,_ ~(t) = Wo(t) = kS(t). A better convergence of  the method 
follows if, f r o m  S(t), a function Wo(t ) is estimated which approaches the 
distribution function W(t) better than kS(t). 

The results are valid for stationary states. If  the heat capacity varies during an 
experiment due to a reaction in the sample, z also varies and thereby A and K, too. 
If a stationary state occurs again after the reaction, the two states can be put 
together. For the transition from Co, 30 and K o to the new values altered by AC, A~ 
and AK, an approximate expression of the form 

C =  Co+ 1 + - a r c t a n \ n  (23) 

can be used, where t b and te are the beginning and the end of the change. 
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Zusammenfassung - -  Die Apparatefunktion, das ist die Reaktion der Anordnung aufeinen Heizimpuls, 
wird f/Jr eine Differential-Thermo-Anlage abgeleitet, wobei neben WS.rmemeitung auch -Konvektion und 
-Strahlung zugelassen sind. Die L6sung der W/irmebilanzgleichung wird durch die 0berlagerung zweier 
Exponentialfunktionen beschrieben, wobei sich die Anhiingigkeiten des Ger/itefaktors und der 
Zeitkonstanten vonder  Wiirmekapazit/it, der Heizrate und der Temperatur ergeben. Zur experimentel- 
len Bestimmung werden die Ausdriicke zu leicht aus den Kalibrierungsmessungen zug/inglichen Gr613en 
aufbereitet. 

Pe3toMe ,~.aa npH6opoa ,~Ta Bsiae,aeHa annapaTypnart ~bynrtma - -  OTICIIHK yCTaHOBKH na Ten.aoao~ 
HMIIy.IlbC, B KOTOpO~, KpOMe TeH.IIOIIpOBO,KHOCTH, yqHTblBa.rlHCb Ten.aoBa~ KOHBeKIIHI1 M TeIl.~oBoe 
H3.qyqeltHe. Petuenne ypaBHeHtta TelI.IIOBOFO 6a,aaHca ripoBe~leHo Ha.qox~eliHeM ~lByx 
3xcnoueHtm~IbnbIx qbyH~url~, ~TO npnseao r 3aBHCHMOCTM rpa~ynpoao~ttoro KoaqbqblllIHenTa rl 
I1OCTO~IHHblX BpeMeHH OT TerlYlOeMKOCTI4, CKOpOCTH narpeaa n TeMnepaTypbL FIpH 
3KClIept,IMeHTaYlbHOM onpe~leheaHr~ 3TH COOTHOmeHH~i npeo6pa30BhiBa~xeb B BbIpaXeHH~, YleFKO 
no.ayqaeMble H3 rpa~lynpoBoqHmX H3MepeHHH. 
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